
31

Figure 4. Same as Figure 3, except that the means of the variables associated with all components

past component one were now also chosen uniformly randomly, though from between 1.9 and 2.1.
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Figure 3.Histogram of the differences inρ betweenε( ) andε( ) for the same situation as in

Figure 2, except N is increased to 10, 240 experiments were conducted, = {1, 1, 1, 1, 1, 1, 1, 1,

1, 1}, and all components of < .25 were zeroed out. The means for component one for both

actions were chosen uniformly randomly between 0 and 10.0, and the variances were chosen uni-

formly randomly between 0.0 and 3.0. The means of the other variables were all 2, for both

actions, and the associated variances were chosen uniformly randomly between 0 and 5.0.
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Figure 2. Histogram of the difference betweenρ when andρ for the teacher’s . The total

number of experiments was 350, M was 50, m = 1, = (1, 1), and diagonal covariance matrices

were used. The two variances for the first component of (one variance for each action) were

both chosen by sampling the uniform distribution extending from 0.0 to 1.0, and for the second

component by sampling the uniform distribution extending from 0.0 to 100.0. The components of

were chosen by randomly sampling a uniform distribution from 0.0 to 10.0. Both components

of were 2.

-0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

5

0

5

0

5

0

b c= b

c

y

µ1

µ2



28

FIGURES.

Figure 1. A plot of ε( ) for K = 2, N = 2, , m = 1, = (1, 1), and diagonal covariance

matrices. For action 1, = (1, 3), and = (0, 3). The two variances for both actions were 1 and

25 (one variance for each component of ). The optimal is proportional to (1, 0). For this ,ρ

was .16. In contrast,ρ for was .34; performance improved by using the optimal by over

a factor of 2.
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= , since is diagonal and terms like

 have odd symmetry.

Again using ‘s being diagonal and symmetry arguments, we can write our integral, getting

C.3) = , since is diag-

onal. But , by definition of  and .

A similar result holds for . Now use Thm. 2 to write E(G | g1, g2, m) =

. Plugging in gives the result claimed.QED.
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2π Ẽii

-------------------------------------------------------------------
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Ĝ2
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2pL (µ − µL)2, which takes on its minimal value of 2pL µ2 whenµL = 0. So pL = σ2 / 2µ2, which

is what one would expect from Chebychev’s inequality.

In addition to this bound, since x is symmetric aboutµ, we also know that pL ≤ 1/2. This

establishes (ii).QED.

APPENDIX C  - Proof of Theorem 4.

Examining the terms in Thm. 2, we see immediately that ⋅ and ⋅ . We

can also immediately write = E( ) = E( ) =

⋅ E( ) ⋅ = . Similarly, = . So C(E(δm), σ2(δm)) is the

cumulative distribution function of a Gaussian with mean and variance

, evaluated at 0. This is just {1 -  / 2}.

The remaining terms to calculate are  and . Writing it out,
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ĝ1 b= µ1 ĝ2 b= µ2
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Now always, by the chain rule.

Accordingly, if we add and subtract from the last expres-

sion in Eq. (B.2), we get K + . Plugging this into

the definition ofρ{gi}
(K, m) gives the result claimed.QED.

APPENDIX B  - Proof of Lemma 1.

Consider the case where P(x) is not constrained to be symmetric aboutµ. The bound in (i)

trivially holds forµ = 0. Without loss of generality takeµ > 0. Define pR ≡ ∫0
∞

dx P(x) and pL sim-

ilarly. DefineµR as the expectation of x restricted to the positive axis,∫0
∞

dx xP(x) / pR, and define

µL similarly. Then by Jensen’s inequality, for any fixed form of the distribution P(x) over the x <

0, if we replace P(x) for the x > 0 with pR δ(x - µR) we will decrease the variance of P(x) over all

of x, while not changing its mean. Therefore for a fixedµR, µL and pR, the associated P(x) having

the minimal variance is P(x) = pR δ(x - µR)  +  (1 - pL) δ(x - µL).

That minimal variance is (µR - µL)2 (pR - pR
2). The associated value ofµ is just pR(µR - µL) +

µL. Therefore (µR - µL) = (µ - µL) / pR. Plugging into the formula for the minimal variance, we

getσ2 = (µ - µL)2 (pR - pR
2) / pR

2. SinceµL must be≤ 0 by definition andµ ≥ 0 by hypothesis,

this minimal variance is minimized by havingµL = 0:σ2  = µ2 pL / (1 - pL).

This lower bound on the variance is monotonically increasing as a function of pL. Accord-

ingly, this same formula gives us an upper bound on the pL that are compatible with a given vari-

ance. Inverting, we see that that bound is justσ2 / (σ2 + µ2). This establishes (i).

To establish (ii), we start the same way, replacing P(x < 0) with pL δ(x - µ). Since x is symmet-

rically distributed aboutµ, we must concurrently replace P(x > 2µ) with pL δ(x - (µ − µL)). As our

next step, we replace P(0≤ x ≤ 2µ) with (1 - 2pL) δ(x - µ). Doing all this leaves E(x) and P(x < 0)

unchanged, and also leaves x symmetric aboutµ, while decreasingσ2. This minimal variance is

Pi u( ) Cj u( )
j i≠∏[ ] ud∫i 1=

K∑ d
du
------ Cj u( )

j∏[ ] ud∫ 1= =
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APPENDIX A  - Proof of Theorem 1.

Writing it out,

B.1) P(naive student chooses action i | K, m, {gi})   =

.

To evaluate this, it helps to consider the density function P-i(u), defined as the density over the

random variable max[g1( 1), ..., gi-1( i-1), gi+1( i+1), ...., gk( K)], evaluated at the value u. This

is because by change of variables, our integral can be rewritten as

. Now by definition, P-i(u) =

, where Pr(x) is defined

as the probability of event x. Since all the events in the argument of the probability in our expres-

sion are independent, we can rewrite this as P-i(u) =

where for shorthand we’re defining Ci(u) ≡

Ci,gi,m
(u).

Plugging this in, we get as our integral. Per-

forming the inner integral over s gives 1 - Ci(u). Plugging this into Eq. (B.1) gives

B.2) E(G | naive student, K, m, {gi})

=

=

=    (after integrating by parts).
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2. Throughout this paper we will assume that there are no singularities in any of our distributions

and none of the {gi(.)} have “plateaus” of nonzero measure across which they take on a constant

value. Accordingly, this argmax is unique, with probability 1.

3. In practice, it is often useful to evaluate Pi,f,m(x) by multiplying m times the inverse Fourier

transform of [F(Pi,f,1(x))(k)]m evaluated at mt, whereF(Pi,f,1(x))(k) is the Fourier transform of

Pi,f,1(x), evaluated at k.

4. The canonical example of such a case would be where the prior over1 and 2 is uniform up

to very large cutoffs. For such a case the posterior of is∫d 1d 2 δ( - ( 2 − 1)) P( 1, 2 |

{ 1(t), 2(t)}) ∝ ∫d 1d 2 δ( - ( 2 − 1)) P({ 1(t)} | 1) P({ 2(t)} | 2). Up to overall nor-

malization constants, this integral is just the distribution of the difference of two random variables

1 and 2, distributed according to P({1(t)} | 1) and P({ 2(t)} | 2), respectively. Since those

two distributions are just Gaussians, we see that the posterior is just a Gaussian over , having

mean , and having variance / M for each component i if the

covariances of 1 and 2 are diagonal. That mean is, by definition, . In turn, as discussed above

just before Thm. 2, since each is the variance of the difference of two random variables

(namely the i’th component of and the i’th component of ), it equals the sum of the vari-

ances of those two variables. Finally, those two variances can be estimated from the data directly,

for example in the same calculation that estimates the two , say by using maximum likelihood.

This provides us with our variances: .

µ µ
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where rather than simply setting the reward signal of a single student to optimize its utility, there

are multiple students, and one must set their reward signals so that their collective behavior opti-

mizes a global utility. What makes this problem so challenging is that in addition to addressing the

“optimal teaching” kinds of issues investigated in this paper, in choosing each of the student’s

reward signals we must also ensure that those signals induce the students to work cooperatively as

far as the global goal is concerned, rather than at cross-purposes. In particular, we must ensure

that the system does not exhibit tragedy of the commons phenomena [4], like traffic jams and bot-

tlenecks [1, 5].

This variant of this paper’s topic is known as “Collective Intelligence”. Preliminary work on

collective intelligence, including an overview, and applications to network routing, the El Farol

Bar problem, and the leader-follower problem, can be found in [14, 12, 13], respectively. In addi-

tion to extending the results of this paper to more complicated learning scenarios and students,

future work also involves incorporating these results into the collective intelligence domain.

FOOTNOTES

1. Of course, one can always dispute the validity of any particular choice of estimator, this one

included. Our purpose in this paper is not to engage in (potentially endless) disputes about what

estimator the student should use. Forany choice, there will be an associated calculation we can

perform of how best to distort the reward signal the student receives. In general, that optimal dis-

tortion will be non-zero. This paper is simply the investigation of this issue of how to distort the

reward signal for one estimator, an estimator that is both very reasonablea priori and imposes an

extremely small computational burden on the student. The latter point is especially important

when one is concerned with massive MAS’s, many of the agents in which are computationally

weak. See [14].
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smallest of the components of the filter set to 0 after the ascent has completed. With this approxi-

mation, the communication and computational overheads in generating the student’s reward sig-

nal at each moment in the teaching phase is minimal. We also intend to investigate “parallelizing

the teacher”, by distributing to the computational devices associated with each random variable an

approximate version of the calculation of whether the associated component of the linear filter is

low enough to be set to zero. This minimizes both the computational and communication burdens

on the teacher, compared to having the teacher receive and process all the data from all the ran-

dom variables.

Other future work involves calculating the optimal functions {gi(.)} for the case of the Baye-

sian calculation with a Gaussian approximation to the posterior. This contrasts with the calcula-

tion presented above as our “special case”, which is of the optimal g(.) that is a linear function of

its argument and is independent of A. Of particular interest is the case where the prior over the

vector {E( )} is biased towards having many components be independent of i, since that should

be the case in large MAS’s, where many random variables in the environment don’t depend on the

student’s actions. Also of interest is using tractable priors over the covariances of the { }.

Regardless of the priors one uses, one practical concern with using this kind of more general

{gi(.)} is that, having more degrees of freedom than the g(.) calculated here, it may be prone to

overfitting the data, especially if not all of our distributions are Gaussians.

Other future work involves investigating schemes for distorting reward functions in more

complicated RL scenarios than the one considered in this paper. Such work would consider sce-

narios in which utility is not an undiscounted sum of rewards each of which only depends on a

single action by the agent. In particular, such work would consider alternatives to the usual Q-

learning and TD types of schemes in which the utility function is distorted “with malice afore-

thought” to improve the performance of the RL algorithm. Such distortions could potentially be

used to address issues like credit assignment, the exploration-exploitation trade-off, etc., in addi-

tion to the signal/noise issues explored in this paper.

An extraordinarily rich and challenging variant of the work in this paper concerns situations

yi

yi
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the associated variances were chosen uniformly randomly between 0 and 5.0.

A total of 240 experiments were conducted. When the threshold for zeroing a component of

was 0 (i.e., no components were zeroed), the difference inρ betweenε( ) andε( ) was .137 +/-

.025. When we zeroed out all components of that were less than .25, the average difference inρ

betweenε( ) andε( ) was .142 +/- .027. The histogram of those differences inρ for this second

case are presented in Figure 3. On average, 76% of the components of were zeroed out. In 15 of

the 240 experiments the first component of  was (erroneously) zeroed out.

We then conducted a second set of zeroing out experiments identical to these first ones, except

that the means of the variables associated with all components past component one were now also

chosen uniformly randomly, though from between 1.9 and 2.1. Without zeroing the average dif-

ference inρ betweenε( ) andε( ) was .150 +/- .025. When all components with values less than

.25 were zeroed out, the difference inρ betweenε( ) andε( ) was .156 +/- .027. The histogram

of those differences inρ for this second set of zeroing- ’s experiments are presented in Figure 4.

On average, 79% of the components of were zeroed out. In 9 of the 240 experiments the first

component of  was (erroneously) zeroed out.

Clearly for this problem at least, zeroing out small-enough components of results in no deg-

radation in performance.

CONCLUSIONS

This paper demonstrates that distorting the reward function can result in major improvements

in performance of a reinforcement learning algorithm, both in theory and in simulations. In the

future we plan to extend our investigation in many respects. One is to consider the setting of linear

filter reward functions via gradient ascent over the kinds of model-independent, student-indepen-

dent approximations to the surface of posterior expected true utility that were discussed after

Thm. 4. In particular, we plan to investigate approximating such a gradient ascent by having the

b

b c

b

b c

b

b

b c

b c

b

b

b

b
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teacher with an observation phase. The teacher then used the data collected during that phase to

set the parameters of the approximation to the posterior expected reward presented at the end of

Section 4. It then ran a gradient ascent on that surface to find an optimal .ε( ) was then calcu-

lated using the actual means and variances of the , giving the expected performance of a student

when using that to set its reward signals during a subsequent teaching phase. The value ofρ for

these rewards was compared to that ofε( ) to get a final quantification of how much the Bayesian

teacher managed to benefit the student.

The result of these experiments is presented in Figure 2 as a histogram of the difference

betweenρ when andρ for the teacher’s . The total number of experiments was 350, and

M was 50. m = 1, = (1, 1), and diagonal covariance matrices were used. The two variances for

the first component of (one variance for each action) were both chosen by sampling the uniform

distribution extending from 0.0 to 1.0. The two variances for the second component were both

chosen by sampling the uniform distribution extending from 0.0 to 100.0. The components of

were chosen by randomly sampling uniform distributions, and similarly for the components of

. Those distributions were both Dirac delta functions about the same value for component 2,

centered about 2. For component 1, for both actions, the upper bound of the distribution was 10,

and the lower bound of the distribution was 0. The difference inρ extended from a low of -.53 to

a high of .34. The average was .098, +/- .013. A total of 320 out of the 350 experiments resulted in

a positive difference in theρ’s. Clearly the Bayesian teacher provides very significant benefit to

the student.

Finally, we have conducted some preliminary investigations of our scheme for setting some of

the components of the Bayesian teacher’s to 0. We increased N to 10, while keeping diagonal

covariance matrices, M = 50 and m = 1. = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}. As in the experiments that

resulted in Figure 2, we still only had component one matter, i.e., for all other components the

means were the same for both actions. The means for component one for both actions were cho-

sen uniformly randomly between 0 and 10.0, and the standard deviations were chosen uniformly

randomly between 0.0 and 3.0. The means of the other variables were all 2, for both actions, and

b b
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b

c

b c= b
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ε( , ) ≈  ε( , )  +

.

This approximation has the following reasonable properties:

1) It is proportional to the magnitude of ;

2) It is invariant under rescaling of ;

3) ε term contributes;

4) Changing  to increase  while keeping everything else fixed is good, in general.

5. EXPERIMENTS

To consider the special case of Sections 3 and 4 in more detail, Figure 1 presents the function

for the case of K = 2, N = 2, , m = 1, = (1, 1), anddiagonal covariance matrices. For

action 1, = (1, 3), and = (0, 3). Note that these means are identical for component 2 of -

that component serves purely as noise. The two variances for action 1 were 1 and 25 (one variance

for each component of ). The two variances for action 2 were 1 and 25. (A large variance for a

component 2 that contributes only noise, with K = 2, is equivalent to small variances for many

components all of which contribute only noise, with K > 2.) The optimal is proportional to (1,

0). For this ,ρ was .16. In contrast,ρ for was .34. Bothρ’s are less than .5, in agreement

with Thm. 3(ii). Performance improved by using the optimal  by over a factor of 2.

To test how much of this potential improvement can be actually realized by our Bayesian

teacher, we ran a set of computer simulations. In each of these the means and variances of the

were randomly chosen, and the resultant distributions were sampled M times to provide the
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4. THE POSTERIOR OPTIMAL TEACHER FOR OUR SPECIAL CASE

In the real world the teacher doesn’t know , , , or , but must estimate them from

the data acquired during the teacher’s observation phase. Accordingly, the teacher’s task is to

choose the that maximizes the posterior expected value of G, E(G | , m, data) =

. Evaluating this expression will

require specifying a prior P( ). In particular, in large MAS’s, one would probably

want a prior that biases  to have most of its components close to 0.

To illustrate this we consider the case where and are known or in some other way fixed

(e.g., they’re set to their maximum likelihood estimates), and P( ) is well-approxi-

mated by a diagonal Gaussian with mean and variances .4 Under these conditions,

, where is evalu-

ated at . Since that gradient is itself a Gaussian in times a monomial in ,

is a Gaussian integral. One can carry through this integral to get a closed

form expression, which can then be used in a gradient ascent to find the maxima of

.

The functional form of this closed form expression for the gradient is not very illuminating

however. As a pedagogical alternative, we assume that our Gaussian P( | data) is sharply peaked,

and approximateε( ) to second order in  about , the peak of our Gaussian:

ε( , ) ≈  ε( , )  + (  - ) ⋅ ε( ,  + .

The second term integrated against our Gaussian P( | data) equals 0, since that term has odd

symmetry. The first term just contributesε( , ) after that integration. Doing the double differen-

tiation in the third term and evaluating at produces a Gaussian in . We must evaluate the

integral over of the product of that Gaussian with P( | data). The result is the following approx-

imation:
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ing components of to 0 will not affect the numerator of the argument of the erf occurring in

Thm. 4, but it will decrease the denominator. Accordingly, our doing this will increase the erf

term in Thm. 4 if ⋅ ( 2 − 1) is positive, and will decrease it if ⋅ ( 2 − 1) is negative. So if

, the maximizingε( ) has the value 0 for all components for which2 − 1 equals 0.

Intuitively, the optimal student ignores all components of theA(t) for which both actions have

the same expected payoff, since those components just contribute an overall noise to the reward

signal.

In practice, as discussed in the experiments section below, we can exploit this effect by setting

to 0 all components of whose magnitude falls below some preset threshold. Examination of

Thm. 4 suggests that we can go further and approximate such a zeroing operation in a parallel

fashion. For example, we could set to 0 all components i such that is small

enough. If the random variable i has a computational device associated with it (e.g., if it is a stu-

dent in a MAS), then by only examining data generated by random variable i during the observa-

tion phase in response to the student’s actions, the computational device associated with random

variable i can determine whether to zero out the associated component of . Then the data associ-

ated with that variable need only be communicated to the teacher if the associated component of

has not been zeroed out. As discussed in the introduction, this would potentially reduce signifi-

cantly the computational and communication burdens on the teacher.

In general, even when = , so that both G(.) and g(.) are linear functions ofA, the max-

imizing ε( ) will not equal . In other words, even if both G(.) and g(.) are linear functions of

A, we will not want to have g(A) = G( A). This demonstrates that even in this simple scenario,

we will want to distort the reward to achieve best performance of the student. The details of how

to estimate that optimizing distortion from a finite set of data are discussed in the next section.

b

b µ µ b µ µ

D̃ 0̃= b b µ µ

y

b

µ2 µ1–( )i

C̃2 C̃1+( )ii

-------------------------------

b

b

D̃ 0̃ y b

b c
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To address the general case we must evaluate the expected value of G as a function of . As

mentioned just after its presentation, Thm. 2 applies to our special case of normally distributed

and and linear g(.), since in this case P(δm) must be a Gaussian. For pedagogical value, the

evaluation of the terms in that theorem is performed in Appendix C. The result is as follows:

Theorem 4:ε( ) ≡ E(G  | , , , 2, 1, 2, 1, m)  =

[ ⋅ ( 2 + 1)  + 2 ⋅ ⋅ 2  + 1 ⋅ ⋅ 1  +  Tr(  ( 2 + 1))]

+

[ ⋅ ( 2 − 1)  + 2 ⋅ ⋅ 2  − 1 ⋅ ⋅ 1  +  Tr(  ( 2 - 1)))] ×

erf  .

Our expected G is maximized by the for which = . By examining

Thm. 4 we see that which of the zeroes of this quantity we want will depend on whether we want

the maximum or the minimum of the quantity erf occurring in Thm. 4.

In turn, which of those we want will depend on the sign of the multiplicative factor[ ⋅ ( 2 − 1)

+ 2 ⋅ ⋅ 2 − 1 ⋅ ⋅ 1 + Tr( ( 2 + 1))]. So for example, if that sign is positive, then

we want the maximum of erf , which occurs when its argument is max-

imal. Conversely, if the sign of the factor is negative, we want to minimize that argument. In par-

ticular, if , then we want ⋅ ( 2 − 1) and ⋅ ( 2 − 1) to have the same sign. In other

words, we want and to have the same projection onto the difference in expected ’s,( 2 −

1).

Now consider the case where some components of2 − 1 equal 0. Setting the correspond-

b
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can update g(.) (which in this case means updating ), then the teacher’s goal is use the data it

gleans during the observation phase to calculate the optimal , which it then transmits to the stu-

dent, and which the student subsequently uses to evaluate its reward signals during the teaching

phase.

For = , = {1, 1, 1, .., 1}, and both A diagonal, there are two extremal cases. In the first

one, 2 - 1 = {1, 0, 0, ..., 0}. In this case, having any of the components of bi≥2 nonzero will

simply result in noise being added to g(1(t)) - g( 2(t)), in the sense that the associated compo-

nents of 2(t) and 1(t) convey no information about which action is preferable, and therefore can

only serve to “confuse” the student’s algorithm, A(M+m+1) = 3/2 + sgn[ΣM+1≤t≤M+m g( 1(t)) -

g( 2(t)) ] / 2. (In fact, it is hard to imagine a non-pathological algorithm for which allowing any

of the components of 2(t) and 1(t) beyond the first to contribute to the associated rewards can

do anything other than decrease performance for this case.) Accordingly, the optimal for this

case is (1, 0, 0, ..., 0).

Intuitively, in the language of sampling theory statistics, having = (1, 0, 0, ..., 0) rather than

∝ introduces bias into the student’s algorithm, but more than compensates for that by

decreasing the variance so that the total sum of bias and variance - which gives the expected per-

formance - improves [15]. Another way to understand the usefulness of having and not be

parallel is to view the student as running a search algorithm to try to find the optimal action. In

this perspective, the student is repeatedly sampling the (noisy) surface that maps actions to

rewards, with the desire of finding its maximum. Distorting the reward signal then corresponds to

modifying a surface to make it easier to search while leaving its maximum intact.

Conversely, consider having2 - 1 = {1, 1, 1, ..., 1} and 2 = 1, so that each sample of

2(t) - 1(t) is an N-fold IID sample of the same underlying Gaussian distribution having mean

1. In this case, = {1/N, 1/N, ..., 1/N}∝ results in g( 1(t)) - g( 2(t)) being an average of N IID

samplings of the same underlying distribution. Such an average will have smaller variance than

would having = (1, 0, 0, ..., 0), while having the same bias (namely 0). In this case, the optimal

 is any vector proportional to .

b

b
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y y
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ii) If the random variables G(0) and G( 1) are symmetrically distributed about their means,

then

ρG(2, m) ≤ .

Similar bounds hold forρ{gi} (2, m), with  replaced by  and replaced by .

As a particular example of Thm. 3, for normally distributed0 and 1, and G(.) that is a linear

function of its argument, bound (ii) applies, and we know that modifying the reward signal cannot

gain us a factor greater than 2 in normalized performance.

3. DEFINITION OF OUR SPECIAL CASE

We now investigate a particular instance of this general phenomenon for K = 2, and in partic-

ular what is involved in approaching the performance improvement theoretically allowed accord-

ing to Thm. 3. For simplicty, we take each of the two distributions P(A) to be a Gaussian,

centered on 2 ≡ (µ1,2, ...,µN,2) and 1 ≡ (µ1,1, ...,µN,1) respectively, and with (positive definite)

covariance matrices 2 and 1, respectively. Also for simplicity, we take G(A) = ⋅ A +

A ⋅ ⋅ A for some matrix and vector , and g(A) = ⋅ A for some vector . Note that

the magnitude of  will have no effect on the student’s decision of which action to take.

Having non-zero means that we are using a linear reward signal even though we know G is

nonlinear. There are several situations that this mismatch is meant to model. Perhaps the most

important is where due to computational limitations, the student can only use reward signals that

are linear functions of the {1(t)} and { 2(t)}. In particular, it may be that due to communication

restrictions only a subset of the components of the {1(t)} and { 2(t)} are transmitted to the stu-

dent (namely those components i for which bi is not close to 0), and due to computational restric-

tions the student can only evaluate linear combinations of those transmitted components to get its

reward signal. If there are also computational restrictions on the teacher, restricting how often it

y y

min
1
2
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2 σ̂G 2,

2
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Note that for any values ofµ andσ, ≤ ; reasonably, the bound in (ii), based

on extra restrictions on P(x), never exceeds the bound in (i).

For m = 1, we cansimplify our notation and write the expected value of G given the naive stu-

dent and the naive reward as P(A = 1)1 + P(A = 2) 2. P(A = 1) is just the probability that

G( 2) - G( 1) < 0. Defining the random variable z to be G( 2) - G( 1), E(z) = 2 - 1 > 0, and

we see that P(A = 1) is just the probability bounded in Lemma (1), with the x in that lemma set

equal to z. (P(A = 2) is just 1 minus this probability.)

To evaluate this bound on P(A = 1) we need the variance of z,σz
2. This is just the sum of the

variances of G( 1) and G( 2), G,1
2 and G,2

2, respectively. Accordingly, the bound in Lemma

1(i) is . Together with the facts that E(G | best possible reward and stu-

dent) = 2 and E(G | worst possible reward and student) =1, this means that ρG(2, 1) ≤

. If we know that G( 1) and G( 2) are symmetric about their means,

then we can instead use the tighter of the two bounds in Lemma 1, . So if

the random variables G(2) and G( 1) are symmetrically distributed about their means, then we

can instead writeρ(2, 1) ≤ .

For m > 1, we need only use the fact that the distribution of the average of m IID samples of

any random variable t has the same mean as t and (1/m) times its variance. This gives the follow-

ing general results:

Theorem 3:

i)  ρG(2, m) ≤ ;

min 1
2
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Ĝ Ĝ

y y y y Ĝ Ĝ
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suggestion that in general we want to have C( - , ( + ) / m) be small if - is pos-

itive, and large otherwise. Accordingly, - should have the same sign as - . (This is

called having a “factored” reward in [14].) Subject to that restriction we should choose the {gi(.)}

so as to maximize the difference of C( - , ( + ) / m) from 1/2. This means minimizing

the variances and , while having the magnitude of - be as large as possible. Intu-

itively, this means that our signal will be maximally visible compared to our noise. (This is called

having “high learnability” in [14].)

Taken as a whole, we can use these considerations to advise us on what kind of functional

U({gi(.)}, data) we should maximize to set the {gi(.)}. For example, it makes sense to have that

functional depend on the posterior probability that - has the same sign as - ,π, and

on data-based estimates of | - |, of , and of . It should be an increasing function of its

estimate of [m | - | / ( + )] and ofπ. Since it is a posterior probability,π automatically

has a bias preferring that all the {gi(.)} equal G(.), a bias arising from its prior. To ensure that

maximizing U({gi(.)}, data) is unlikely to result in a performance degradation compared to the

naive student and reward, one may wish to augment that bias by having U({gi(.)}, data) weight the

π term more heavily as m shrinks. Intuitively, in keeping with Thm. 2, one would expect that

choosing the {gi(.)} that maximize any reasonable U({gi(.)}, data) that has these characteristics

should result in good performance.

For K = 2 it is straight-forward to boundρG(K, m) (and therefore the potential performance

improvement entailed by distorting the reward function) independently of the details of our distri-

butions. To do so we will use the following “one-sided Chebychev’s inequalities”, derived in

Appendix B:

Lemma 1: For any real-valued random variable x with meanµ and varianceσ2,

i) P(sgn(x)≠ sgn(µ))  ≤ ,

and if x is symmetric aboutµ, then

ii) P(sgn(x)≠ sgn(µ))  ≤ .
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ĝ2 ĝ1
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ĝ2 ĝ1 σ̂1
2 σ̂2

2
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over ℜN \ R, there is a non-zero probability that the empirical mean of our sample of g(K)

exceeds those of all of the samples of the g(i<K) even as K→ ∞. In such a situation,ρg(K, m) is

less than 1 even as K→ ∞. Accordingly, if we can identify such “forbidden regions” R and then

incorporate them into g(.), we will have drastically improvement performance (compared to using

the naive reward) for the case of an infinite number of actions.

On the opposite side of the spectrum, we will often be interested in the special case where K =

2 and our distributions can be parameterized by their means and variances. To address this case,

defineδm as the random variable given by the average of m IID samples of g2( 2) - g1( 1). Then

P(A = 2 | g1, g2, m) is just the probability thatδm is positive. Similarly, P(A = 1 | g1, g2, m) is just

the probability thatδm is negative. So E(G | g1, g2, m) =  Pr(δm ≤ 0)  + Pr(δm > 0).

Moreover, by direct expansion, E(δ1) = - , and the variance ofδ1 equals + . Iter-

ating this rule for summing pairs of random variables, E(mδm) = m( - ) and the variance of

mδm equals m( + ). Accordingly, E(δm) = - , and the variance ofδm equals ( + )

/ m. This establishes the following result:

Theorem 2: Assume that the cumulative distribution function ofδm is uniquely specified by its

mean and variance. Let C(E(δm), σ2(δm)) be that cumulative distribution function evaluated at 0.

Then

E(G | g1, g2, m)   =   +  [  - ] [1 - C(  - , (  + ) / m)].

So for instance Thm. 2 applies ifδm is normally distributed. As a particular example, investi-

gated in detail below, the assumption in Thm. 2 holds when0 and 1 are both normally distrib-

uted and both g1(.) and g2(.) are linear functions of their arguments. This is because under those

circumstancesδ1 is a gaussian random variable, and therefore so isδm.

More generally, Thm. 2 provides guidance on how to set the {gi(.)} even when it does not

strictly apply, for example when we do not have strong prior beliefs concerning how the {i}are

distributed, and/or the student does not use the naive algorithm. Thm. 2 makes the very reasonable

y

y

y y

Ĝ1 Ĝ2

ĝ2 ĝ1 σ̂1
2 σ̂2

2
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E(G | naive student, {gi}, K, m) = × P(naive student chooses action A | {gi}, K, m)],

the following result is derived in Appendix A:

Theorem 1:ρ{gi} (K, m)  = .

To illustrate this theorem, consider the case of the naive reward. Intuitively, the more actions

the student can take, the more action-reward data sets it will look at at the end of the teaching

phase. Any one of those data sets may, by “statistical fluke”, have higher empirical mean than the

sample corresponding to the optimal action. So the more actions the student can take, the more

likely it is to find someaction which appears to be better than that of what is in fact the optimal

action. Thus, the more actions it can take, the more likely the student is to not choose the optimal

action.

By using Thm. 1, we can illustrate this phenomenon for the case where all the variablesi<N

are identically distributed, and therefore so are the G(i<N). By that theorem, we can write

ρG(K, m) = (K - 1) . In turn, we can write this as

, since = 1. Consider the common

case where the support of P1,G,m(t) is infinite. In this case, in the limit of large K, the product of

cumulative distributions in our integrand goes to 0 everywhere away from infinity. Accordingly,

so long as PK,G,m(t) is nowhere singular, the integral goes to 0, andρG(K, m) reduces to 1. Thus,

for fixed m, in the limit of a large number of possible actions, the naive student and reward will do

aspoorly as possible.

For the same problem not to befall the use of the distorted rewards {gi(.)}, even if the gi<K(.)

are identical, it is necessary that C1,g1,m(t) reaches 1 before CK,gK,m(t) does. If both P( 1) and

P( K) are nowhere zero, this in turn requires that g1(.) ≠ gK(.). However there are cases where all

the gA(.) are identical, but stillρ ≠ 1. In particular, consider the case where there exists a region R

⊂ ℜN across which 1 is forbidden, while K can occur there with non-zero probability. Then by

having g1(.) = gK(.) ≡ g(.) and giving values to all g( ∈ R) that are larger than any of the values

[ĜAA 1=
K∑

ĜK ĜA–( ) PA gA m, , t( ) Cj g j m, , t( ) td
j A≠
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∑
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G(.) for all A thenaive reward. For the special case of K = 2, we can write the naive student’s

algorithm as A(M+m+1) = 3/2 + sgn[ΣM+1≤t≤M+m g2( 2(t)) - g1( 1(t)) ] / 2, where sgn(z∈ ℜ) is

defined to be the sign of z when z is nonzero, and to be zero otherwise.

To normalize how much of an improvement we can possibly get by distorting the reward sig-

nal, we define a fractional improvement in performance:

ρ{gi} (K, m) ≡

.

ρG(K, m) is defined asρ{gi} (K, m) when the naive rewards are used, so all the gi(.) equal G.

ρ{gi}
(K, m) is implicitly a function of the distributions governing theA and the choice of the

{gi(.)}. ρG(K, m) also depends on those distributions, in addition to depending on G(.).ρG(K, m)

is a normalized measure of the largest performance improvement potentially achievable by dis-

torting the reward functions and/or the student.ρG(K, m) - ρ{gi} (K, m) measures the actual nor-

malized performance improvement if the naive student is used with the reward functions {gi(.)}

rather than if it is used with the single reward function G(.) for all actions.

For the analysis below it will be useful to define PA,f,m(x ∈ ℜ) for an arbitrary function f( A)

as the probability density function over the average of m IID samples of f(A).3 Define the K

means A ≡ E(gA( A)), and define the associated variances2A ≡ Ε([gA( A) - A]2). Also

define the K cumulative distribution functions as the integrals of the {PA,gA,m}: CA,gA,m(t ∈ ℜ) ≡

Pr( A : the average of m IID samples of gA( A) ≤ t). Finally, define and

, and label the K actions in order of ascending , from 1 to K.

2. GENERAL FORMULAS FOR PERFORMANCE IMPROVEMENT

In general, to calculateρ{gi} (K, m) we need only calculate E(G | naive student, {gi}, K, m),

since the other three terms in the definition ofρ(., .) are all either or . Using the expansion

y y

E(G | best possible reward and student) E(G | rewards– gi .( ){ } and naive student)

E(G | best possible reward and student) E(G | worst possible reward and student)–
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

y

y

y
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time t ∈ {M + 1, ..., M + m} the student takes all such actions, in succession. There are a set of N

real-valued random variables which are sampled once after each such action. This generates K

separate N-dimensional vectors, {i(t) ≡ (y1,i(t), ..., yN,i(t)) : i ∈ {1, ..., Κ}, t ∈ {M + 1, ..., M +

m}}. In each such sampling, the distribution governing the N-dimensional random variable is

determined solely by the student’s associated action, and in particular does not depend on the

results of any other samplings. Furthermore, the rule relating the student’s action and the distribu-

tion over the N variables do not change in time. So another way to view a set of m K-tuples of

samplings is as the generation of K distinct sets of m independent and identically distributed (IID)

samplings, one set for each of the K separate N-dimensional random variables associated with

each of the student’s K possible actions.

At each moment t∈ {M+1, ..., M+m}, in response to each of its K actions, the student will

receive K associated reward signals, with values {gi( i(t))} for some functions {gi(.)} (i ranges

over the possible actions). The student will then at time M+m+1 use that set of Km reward signals

to estimate which of its K possible actions A will, if used forevermore, likely result in the highest

possible value ofΣt≥M+m+1 gA( A(t)). Due to the IID nature of the generation of the samples, this

is equivalent to estimating which action A will result in the highest possible value of

gA( A(M+m+1)).

The student’s utility isΣt G( A(t)(t)) for some function G(.), where A(t) is its action at time t.

We will judge the student’s performance (and therefore the choice of the {gA(.)}) not in terms of

Σt≥M+m+1 gA( A(t)), but in terms of the true utility,Σt≥M+m+1 G( A(t)(t)), i.e., in terms of

G( A(M+m+1)(M+m+1)). So given a particular specification of the student’s estimator for predict-

ing which A to use, our goal is to choose the set of reward functions {gi(.)} that optimizes the

value of G( A(M+m+1)(M+m+1)) that will result from the student’s using that estimator.

For simplicity, we assume the student performs its estimation of which action to use with the

maximum likelihood unbiased estimator of the means of the K distributions governing the gener-

ation of the { A}. 1 In other words, we assume the student picks the action given by

argmaxA[ ΣM+1≤t≤M+m gA( A(t)) ].2 We call this thenaive student, and we call having gA(.) =

y

yi

y

y

y

y

y y

y

y
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ations one can often partially “parallelize the teacher”, by distributing to those computational

devices an approximate version of the calculation of whether the associated component of the lin-

ear filter is low enough to be set to zero. Under this approach, during the observation phase, each

of the computational devices collects the data associated with its random variable. Then at the end

of the observation phase, all the devices look at their accumulated data, and only those devices

that decide that they shouldnotzero the associated component communicate their data to a central

teacher. Then that teacher performs its calculation of the best linear filter, but only considering

those components of the filter whose associated devices it has data from. In this scheme both the

computational and communication burdens on the teacher may be reduced substantially, com-

pared to having the teacher receive and process all the data from all the random variables. This is

in addition to the reduction in such burdens already enjoyed by the students, via their having their

rewards determined by the teacher.

Sections 3 and 4 are more intuitive than Section 2. As much as possible, we have written those

two sections so that the reader can skip to them directly after having read Section 1.

The results of this paper demonstrate that there are scenarios in which an appropriate choice

of reward signal can result in an extremely large improvement in the performance of the student.

They also show that it is possible, at least in a simple scenario, to exploit this phenomenon by hav-

ing a teacher observe a system, and based on that observation, tailor the reward signal the student

receives. Doing this markedly improves the student’s subsequent performance, all at little cost

both in extra communication overhead on the system as a whole and in computational overhead

on the student.

1. GENERAL PROBLEM DEFINITION

We consider one of the simplest possible RL scenarios. There is a single teacher and a single

RL-based student. The student can only take one of K possible actions, A∈ {1, ..., Κ}. At each
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distribution-independent bounds on the maximal gain in performance potentially achievable by

distorting the reward function for the special case where K = 2. Theresults of this section hold for

arbitrary reward functions, including functions that are not linear filters and/or that depend on the

student’s action.

In Section 3 we present a preliminary investigation of how some of the potential improvement

calculated in Section 2 might actually be realized. We do this by analyzing in detail a special, sim-

ple version of the case where the reward function is given by a linear filter that is the same for any

of the student’s action. For this special case we calculate in closed form the energy function map-

ping the filter to the associated expected value of the student’s performance at timeM + m + 1.

This function is parameterized by the distributions governing the relationship between the stu-

dent’s actions and the rest of the system. During its observation phase the teacher can form a

Bayesian posterior over of those distributions, and therefore a posterior expected energy function.

In Section 4 we present an approximate calculation of the posterior expected energy function. We

then present a simple-minded gradient ascent scheme for that posterior expected energy function

that the teacher can use to (try to) calculate the optimal filter.

In Section 5 we present the results of experimental tests of that scheme. In particular, we

investigate an approximation to the gradient ascent in which the smallest of the components of the

filter are set to 0 after the ascent has completed. With this approximation, the communication

overhead in generating the student’s reward signal at each moment in the teaching phase is mini-

mal, an important consideration in real MAS’s. Indeed, in many MAS’s each student can only poll

a small number of random variables at each time step. For such a system, having a teacher deter-

mine which variables the student should poll (e.g., by setting many components of a linear filter to

0) is more a necessity than a luxury. This approximation also reduces the computational overhead

on the student, another important practical concern.

A final advantage of this approximation arises when there are many random variables in the

student’s environment that affect its true utility, and many of those variables are accompanied by

computational devices (e.g., if those random variables are other students in a MAS). In such situ-
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with balancing exploration vs. exploitation, and the like. In addition, for a large system with many

random variables, the student may have difficulty discerning the “echo” of its actions in the values

G(ζt), since the effect of those actions could be swamped by all the other processes in the system.

In essence the student faces a signal/noise problem. However, due to its superior observational

abilities, computational resources, and prior knowledge, the teacher can more directly discern the

effects of the student’s actions. It can then distort the rewards received by the student to reflect this

deeper understanding of the system. For example, the teacher can accentuate the contribution to

the reward coming from those random variables that depend strongly on the student’s actions, in a

fashion reminiscent of Kalman filters. In essence, in this setting the teacher is trying to “com-

press” a sophisticated analysis of all the relevant information it has access to into a form usable by

the computationally restricted student (namely, into a reward function). It then transfers that infor-

mation to the student, and in this way shoulders much of the student’s computational burden.

This paper investigates this issue of how the teacher should set the rewards to improve signal/

noise for some very simple (and therefore tractable in closed form) scenarios. In these scenarios,

the teacher first observes the overall system for some “observation phase”, t∈ {1, ..., M}. The

teacher then uses that data to set a reward function. The teacher has nothing to do with the student

subsequent to this calculation. The reward signal received by the student at each moment during a

subsequent “teaching phase”, t∈ {M + 1, ..., M + m}, is given by applying the reward function

calculated by the teacher to the state of the full system at each such t. (If it is just a linear filter,

calculation of such a reward imposes minimal computational overhead on the entity calculating

the rewards, which may be the student itself.) The student then uses those signals to choose what

action to take at t =M + m + 1. So for example, in the case of online, continual RL, we would

have m = 1. The algorithm used by the student to make its choice was known ahead of time by the

teacher when the teacher was deciding on the filter.

In Section 1 we present our general problem in detail. In Section 2 we derive the formula for

the performance (as measured by the student’s true utility) accompanying any particular reward

function, as a function of m and of the number of actions K the student can take. We then present
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INTRODUCTION

Consider the following scenario:

1) There is a “student” running a Reinforcement Learning (RL - [2, 3, 7, 8, 9, 11]) algorithm, who

knows relatively littlea priori concerning the relationship between its observations, its actions,

and the responses of the environment.

2) There is a separate “teacher” who watches the student as well as the rest of the system, and

knows the student’s “true” utility function. The teacher (potentially) knows the form of the proba-

bility distributions underlying the full system’s dynamics.

3) The teacher determines the rewards that the student receives.

How should the teacher set the student’s rewards to most benefit the student, i.e., to maximize

the student’s true utility? This question arises particularly often in RL-based Multi-Agent Systems

(MAS’s - [3, 6, 10]). Invariably in such systems different agents have access to different amounts

of global information and have different computational resources. Moreover, often there is noth-

ing preventing the more powerful and knowledgeable of the agents from modifying the calcula-

tions of the rewards received by the other agents. So there is noa priori reason that they cannot

play the role of teacher.

One answer to our question would be for the teacher to simply provide the student with the

conventional reward signal associated with the student’s true utility function. For example, if time

t is discrete and integer-valued, the state of the full system at time t is the Euclidean vectorζt, and

the student’s goal is to maximize an undiscounted sum of values G(ζt), then the teacher could pro-

vide the student the reward signal G(ζt) at each moment t.

An alternative would be for the teacher to use its superior insight to “steer” the student, by dis-

torting the rewards received by the student in such a way as to induce the student to learn more

effectively. This could potentially help the student with solving its credit assignment problem,
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Abstract: This paper investigates distorting the reward function to improve the performance of a rein-

forcement learning algorithm. This issue is particularly important when many random variables con-

tribute to performance, and in particular in large, heterogeneous, multi-agent systems. For tractability,

we concentrate on a very simple scenario in which the utility of a “student” is an undiscounted sum of

rewards, and each such reward is a sample of a distribution over a multi-dimensional Euclidean space,

where the precise distribution sampled at time t is determined by the student’s action at time t. First

we derive the formula for the amount of improvement in performance possible by distorting the

reward function. We show that as the number of actions the student can take is increased, usingnon-

distorted reward functions results in the worst possible performance with probability 1. We then

derive some general upper bounds on the amount of possible improvement in performance for the

case where the student can only choose between two possible actions. Next we analyze a particular

instance of this scenario in which the underlying distributions are Gaussian. We derive exact formulas

for how much performance improvement is possible with a particular parameterized class of distor-

tions of the reward function. We then derive a Bayesian algorithm for how a “teacher” should estimate

from a finite set of data which of the distortions from such a class to use. We end with computer

experiments verifying the gain in performance entailed by use of that algorithm, and discuss the gen-

eral implications of this work for large, heterogeneous, multi-agent systems.
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